Metamath Proof Explorer


Theorem mulpqf

Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion mulpqf 𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑵×𝑵

Proof

Step Hyp Ref Expression
1 xp1st x𝑵×𝑵1stx𝑵
2 xp1st y𝑵×𝑵1sty𝑵
3 mulclpi 1stx𝑵1sty𝑵1stx𝑵1sty𝑵
4 1 2 3 syl2an x𝑵×𝑵y𝑵×𝑵1stx𝑵1sty𝑵
5 xp2nd x𝑵×𝑵2ndx𝑵
6 xp2nd y𝑵×𝑵2ndy𝑵
7 mulclpi 2ndx𝑵2ndy𝑵2ndx𝑵2ndy𝑵
8 5 6 7 syl2an x𝑵×𝑵y𝑵×𝑵2ndx𝑵2ndy𝑵
9 4 8 opelxpd x𝑵×𝑵y𝑵×𝑵1stx𝑵1sty2ndx𝑵2ndy𝑵×𝑵
10 9 rgen2 x𝑵×𝑵y𝑵×𝑵1stx𝑵1sty2ndx𝑵2ndy𝑵×𝑵
11 df-mpq 𝑝𝑸=x𝑵×𝑵,y𝑵×𝑵1stx𝑵1sty2ndx𝑵2ndy
12 11 fmpo x𝑵×𝑵y𝑵×𝑵1stx𝑵1sty2ndx𝑵2ndy𝑵×𝑵𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑵×𝑵
13 10 12 mpbi 𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑵×𝑵