Metamath Proof Explorer


Theorem opelxpd

Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses opelxpd.1 φAC
opelxpd.2 φBD
Assertion opelxpd φABC×D

Proof

Step Hyp Ref Expression
1 opelxpd.1 φAC
2 opelxpd.2 φBD
3 opelxpi ACBDABC×D
4 1 2 3 syl2anc φABC×D