Metamath Proof Explorer


Theorem opelxpd

Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses opelxpd.1
|- ( ph -> A e. C )
opelxpd.2
|- ( ph -> B e. D )
Assertion opelxpd
|- ( ph -> <. A , B >. e. ( C X. D ) )

Proof

Step Hyp Ref Expression
1 opelxpd.1
 |-  ( ph -> A e. C )
2 opelxpd.2
 |-  ( ph -> B e. D )
3 opelxpi
 |-  ( ( A e. C /\ B e. D ) -> <. A , B >. e. ( C X. D ) )
4 1 2 3 syl2anc
 |-  ( ph -> <. A , B >. e. ( C X. D ) )