Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelxpd.1 | |- ( ph -> A e. C ) |
|
opelxpd.2 | |- ( ph -> B e. D ) |
||
Assertion | opelxpd | |- ( ph -> <. A , B >. e. ( C X. D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpd.1 | |- ( ph -> A e. C ) |
|
2 | opelxpd.2 | |- ( ph -> B e. D ) |
|
3 | opelxpi | |- ( ( A e. C /\ B e. D ) -> <. A , B >. e. ( C X. D ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> <. A , B >. e. ( C X. D ) ) |