Metamath Proof Explorer


Theorem xp1st

Description: Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion xp1st AB×C1stAB

Proof

Step Hyp Ref Expression
1 elxp AB×CbcA=bcbBcC
2 vex bV
3 vex cV
4 2 3 op1std A=bc1stA=b
5 4 eleq1d A=bc1stABbB
6 5 biimpar A=bcbB1stAB
7 6 adantrr A=bcbBcC1stAB
8 7 exlimivv bcA=bcbBcC1stAB
9 1 8 sylbi AB×C1stAB