Metamath Proof Explorer


Theorem elxp

Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion elxp A B × C x y A = x y x B y C

Proof

Step Hyp Ref Expression
1 df-xp B × C = x y | x B y C
2 1 eleq2i A B × C A x y | x B y C
3 elopab A x y | x B y C x y A = x y x B y C
4 2 3 bitri A B × C x y A = x y x B y C