Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
elxp
Next ⟩
elxp2
Metamath Proof Explorer
Ascii
Unicode
Theorem
elxp
Description:
Membership in a Cartesian product.
(Contributed by
NM
, 4-Jul-1994)
Ref
Expression
Assertion
elxp
⊢
A
∈
B
×
C
↔
∃
x
∃
y
A
=
x
y
∧
x
∈
B
∧
y
∈
C
Proof
Step
Hyp
Ref
Expression
1
df-xp
⊢
B
×
C
=
x
y
|
x
∈
B
∧
y
∈
C
2
1
eleq2i
⊢
A
∈
B
×
C
↔
A
∈
x
y
|
x
∈
B
∧
y
∈
C
3
elopab
⊢
A
∈
x
y
|
x
∈
B
∧
y
∈
C
↔
∃
x
∃
y
A
=
x
y
∧
x
∈
B
∧
y
∈
C
4
2
3
bitri
⊢
A
∈
B
×
C
↔
∃
x
∃
y
A
=
x
y
∧
x
∈
B
∧
y
∈
C