Metamath Proof Explorer


Theorem elxp

Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion elxp ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 df-xp ( 𝐵 × 𝐶 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐶 ) }
2 1 eleq2i ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐶 ) } )
3 elopab ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐶 ) } ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) )
4 2 3 bitri ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) )