Metamath Proof Explorer


Theorem elxp

Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion elxp
|- ( A e. ( B X. C ) <-> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) )

Proof

Step Hyp Ref Expression
1 df-xp
 |-  ( B X. C ) = { <. x , y >. | ( x e. B /\ y e. C ) }
2 1 eleq2i
 |-  ( A e. ( B X. C ) <-> A e. { <. x , y >. | ( x e. B /\ y e. C ) } )
3 elopab
 |-  ( A e. { <. x , y >. | ( x e. B /\ y e. C ) } <-> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) )
4 2 3 bitri
 |-  ( A e. ( B X. C ) <-> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) )