Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( A e. { <. x , y >. | ph } -> A e. _V ) |
2 |
|
opex |
|- <. x , y >. e. _V |
3 |
|
eleq1 |
|- ( A = <. x , y >. -> ( A e. _V <-> <. x , y >. e. _V ) ) |
4 |
2 3
|
mpbiri |
|- ( A = <. x , y >. -> A e. _V ) |
5 |
4
|
adantr |
|- ( ( A = <. x , y >. /\ ph ) -> A e. _V ) |
6 |
5
|
exlimivv |
|- ( E. x E. y ( A = <. x , y >. /\ ph ) -> A e. _V ) |
7 |
|
eqeq1 |
|- ( z = A -> ( z = <. x , y >. <-> A = <. x , y >. ) ) |
8 |
7
|
anbi1d |
|- ( z = A -> ( ( z = <. x , y >. /\ ph ) <-> ( A = <. x , y >. /\ ph ) ) ) |
9 |
8
|
2exbidv |
|- ( z = A -> ( E. x E. y ( z = <. x , y >. /\ ph ) <-> E. x E. y ( A = <. x , y >. /\ ph ) ) ) |
10 |
|
df-opab |
|- { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
11 |
9 10
|
elab2g |
|- ( A e. _V -> ( A e. { <. x , y >. | ph } <-> E. x E. y ( A = <. x , y >. /\ ph ) ) ) |
12 |
1 6 11
|
pm5.21nii |
|- ( A e. { <. x , y >. | ph } <-> E. x E. y ( A = <. x , y >. /\ ph ) ) |