Metamath Proof Explorer


Theorem opex

Description: An ordered pair of classes is a set. Exercise 7 of TakeutiZaring p. 16. (Contributed by NM, 18-Aug-1993) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opex
|- <. A , B >. e. _V

Proof

Step Hyp Ref Expression
1 dfopif
 |-  <. A , B >. = if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) )
2 prex
 |-  { { A } , { A , B } } e. _V
3 0ex
 |-  (/) e. _V
4 2 3 ifex
 |-  if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) ) e. _V
5 1 4 eqeltri
 |-  <. A , B >. e. _V