Metamath Proof Explorer


Theorem op1std

Description: Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses op1st.1 AV
op1st.2 BV
Assertion op1std C=AB1stC=A

Proof

Step Hyp Ref Expression
1 op1st.1 AV
2 op1st.2 BV
3 fveq2 C=AB1stC=1stAB
4 1 2 op1st 1stAB=A
5 3 4 eqtrdi C=AB1stC=A