Metamath Proof Explorer


Theorem op2ndd

Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses op1st.1 AV
op1st.2 BV
Assertion op2ndd C=AB2ndC=B

Proof

Step Hyp Ref Expression
1 op1st.1 AV
2 op1st.2 BV
3 fveq2 C=AB2ndC=2ndAB
4 1 2 op2nd 2ndAB=B
5 3 4 eqtrdi C=AB2ndC=B