Metamath Proof Explorer


Theorem mulpipq2

Description: Multiplication of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion mulpipq2 A𝑵×𝑵B𝑵×𝑵A𝑝𝑸B=1stA𝑵1stB2ndA𝑵2ndB

Proof

Step Hyp Ref Expression
1 fveq2 x=A1stx=1stA
2 1 oveq1d x=A1stx𝑵1sty=1stA𝑵1sty
3 fveq2 x=A2ndx=2ndA
4 3 oveq1d x=A2ndx𝑵2ndy=2ndA𝑵2ndy
5 2 4 opeq12d x=A1stx𝑵1sty2ndx𝑵2ndy=1stA𝑵1sty2ndA𝑵2ndy
6 fveq2 y=B1sty=1stB
7 6 oveq2d y=B1stA𝑵1sty=1stA𝑵1stB
8 fveq2 y=B2ndy=2ndB
9 8 oveq2d y=B2ndA𝑵2ndy=2ndA𝑵2ndB
10 7 9 opeq12d y=B1stA𝑵1sty2ndA𝑵2ndy=1stA𝑵1stB2ndA𝑵2ndB
11 df-mpq 𝑝𝑸=x𝑵×𝑵,y𝑵×𝑵1stx𝑵1sty2ndx𝑵2ndy
12 opex 1stA𝑵1stB2ndA𝑵2ndBV
13 5 10 11 12 ovmpo A𝑵×𝑵B𝑵×𝑵A𝑝𝑸B=1stA𝑵1stB2ndA𝑵2ndB