Metamath Proof Explorer


Theorem nlt1pi

Description: No positive integer is less than one. (Contributed by NM, 23-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion nlt1pi ¬A<𝑵1𝑜

Proof

Step Hyp Ref Expression
1 elni A𝑵AωA
2 1 simprbi A𝑵A
3 noel ¬A
4 1pi 1𝑜𝑵
5 ltpiord A𝑵1𝑜𝑵A<𝑵1𝑜A1𝑜
6 4 5 mpan2 A𝑵A<𝑵1𝑜A1𝑜
7 df-1o 1𝑜=suc
8 7 eleq2i A1𝑜Asuc
9 elsucg A𝑵AsucAA=
10 8 9 bitrid A𝑵A1𝑜AA=
11 6 10 bitrd A𝑵A<𝑵1𝑜AA=
12 11 biimpa A𝑵A<𝑵1𝑜AA=
13 12 ord A𝑵A<𝑵1𝑜¬AA=
14 3 13 mpi A𝑵A<𝑵1𝑜A=
15 14 ex A𝑵A<𝑵1𝑜A=
16 15 necon3ad A𝑵A¬A<𝑵1𝑜
17 2 16 mpd A𝑵¬A<𝑵1𝑜
18 ltrelpi <𝑵𝑵×𝑵
19 18 brel A<𝑵1𝑜A𝑵1𝑜𝑵
20 19 simpld A<𝑵1𝑜A𝑵
21 20 con3i ¬A𝑵¬A<𝑵1𝑜
22 17 21 pm2.61i ¬A<𝑵1𝑜