Metamath Proof Explorer


Theorem nlt1pi

Description: No positive integer is less than one. (Contributed by NM, 23-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion nlt1pi ¬ 𝐴 <N 1o

Proof

Step Hyp Ref Expression
1 elni ( 𝐴N ↔ ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) )
2 1 simprbi ( 𝐴N𝐴 ≠ ∅ )
3 noel ¬ 𝐴 ∈ ∅
4 1pi 1oN
5 ltpiord ( ( 𝐴N ∧ 1oN ) → ( 𝐴 <N 1o𝐴 ∈ 1o ) )
6 4 5 mpan2 ( 𝐴N → ( 𝐴 <N 1o𝐴 ∈ 1o ) )
7 df-1o 1o = suc ∅
8 7 eleq2i ( 𝐴 ∈ 1o𝐴 ∈ suc ∅ )
9 elsucg ( 𝐴N → ( 𝐴 ∈ suc ∅ ↔ ( 𝐴 ∈ ∅ ∨ 𝐴 = ∅ ) ) )
10 8 9 syl5bb ( 𝐴N → ( 𝐴 ∈ 1o ↔ ( 𝐴 ∈ ∅ ∨ 𝐴 = ∅ ) ) )
11 6 10 bitrd ( 𝐴N → ( 𝐴 <N 1o ↔ ( 𝐴 ∈ ∅ ∨ 𝐴 = ∅ ) ) )
12 11 biimpa ( ( 𝐴N𝐴 <N 1o ) → ( 𝐴 ∈ ∅ ∨ 𝐴 = ∅ ) )
13 12 ord ( ( 𝐴N𝐴 <N 1o ) → ( ¬ 𝐴 ∈ ∅ → 𝐴 = ∅ ) )
14 3 13 mpi ( ( 𝐴N𝐴 <N 1o ) → 𝐴 = ∅ )
15 14 ex ( 𝐴N → ( 𝐴 <N 1o𝐴 = ∅ ) )
16 15 necon3ad ( 𝐴N → ( 𝐴 ≠ ∅ → ¬ 𝐴 <N 1o ) )
17 2 16 mpd ( 𝐴N → ¬ 𝐴 <N 1o )
18 ltrelpi <N ⊆ ( N × N )
19 18 brel ( 𝐴 <N 1o → ( 𝐴N ∧ 1oN ) )
20 19 simpld ( 𝐴 <N 1o𝐴N )
21 20 con3i ( ¬ 𝐴N → ¬ 𝐴 <N 1o )
22 17 21 pm2.61i ¬ 𝐴 <N 1o