| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indpi.1 | ⊢ ( 𝑥  =  1o  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | indpi.2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | indpi.3 | ⊢ ( 𝑥  =  ( 𝑦  +N  1o )  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 4 |  | indpi.4 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜏 ) ) | 
						
							| 5 |  | indpi.5 | ⊢ 𝜓 | 
						
							| 6 |  | indpi.6 | ⊢ ( 𝑦  ∈  N  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 7 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 8 | 7 | eqvinc | ⊢ ( 1o  =  𝐴  ↔  ∃ 𝑥 ( 𝑥  =  1o  ∧  𝑥  =  𝐴 ) ) | 
						
							| 9 | 5 1 | mpbiri | ⊢ ( 𝑥  =  1o  →  𝜑 ) | 
						
							| 10 | 8 4 9 | gencl | ⊢ ( 1o  =  𝐴  →  𝜏 ) | 
						
							| 11 | 10 | eqcoms | ⊢ ( 𝐴  =  1o  →  𝜏 ) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐴  ∈  N  →  ( 𝐴  =  1o  →  𝜏 ) ) | 
						
							| 13 |  | pinn | ⊢ ( 𝐴  ∈  N  →  𝐴  ∈  ω ) | 
						
							| 14 |  | elni2 | ⊢ ( 𝐴  ∈  N  ↔  ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 ) ) | 
						
							| 15 |  | nnord | ⊢ ( 𝐴  ∈  ω  →  Ord  𝐴 ) | 
						
							| 16 |  | ordsucss | ⊢ ( Ord  𝐴  →  ( ∅  ∈  𝐴  →  suc  ∅  ⊆  𝐴 ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝐴  ∈  ω  →  ( ∅  ∈  𝐴  →  suc  ∅  ⊆  𝐴 ) ) | 
						
							| 18 |  | df-1o | ⊢ 1o  =  suc  ∅ | 
						
							| 19 | 18 | sseq1i | ⊢ ( 1o  ⊆  𝐴  ↔  suc  ∅  ⊆  𝐴 ) | 
						
							| 20 | 17 19 | imbitrrdi | ⊢ ( 𝐴  ∈  ω  →  ( ∅  ∈  𝐴  →  1o  ⊆  𝐴 ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  →  1o  ⊆  𝐴 ) | 
						
							| 22 | 14 21 | sylbi | ⊢ ( 𝐴  ∈  N  →  1o  ⊆  𝐴 ) | 
						
							| 23 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 24 |  | eleq1 | ⊢ ( 𝑥  =  1o  →  ( 𝑥  ∈  N  ↔  1o  ∈  N ) ) | 
						
							| 25 |  | breq2 | ⊢ ( 𝑥  =  1o  →  ( 1o  <N  𝑥  ↔  1o  <N  1o ) ) | 
						
							| 26 | 24 25 | anbi12d | ⊢ ( 𝑥  =  1o  →  ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  ↔  ( 1o  ∈  N  ∧  1o  <N  1o ) ) ) | 
						
							| 27 | 26 1 | imbi12d | ⊢ ( 𝑥  =  1o  →  ( ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  →  𝜑 )  ↔  ( ( 1o  ∈  N  ∧  1o  <N  1o )  →  𝜓 ) ) ) | 
						
							| 28 |  | eleq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  N  ↔  𝑦  ∈  N ) ) | 
						
							| 29 |  | breq2 | ⊢ ( 𝑥  =  𝑦  →  ( 1o  <N  𝑥  ↔  1o  <N  𝑦 ) ) | 
						
							| 30 | 28 29 | anbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  ↔  ( 𝑦  ∈  N  ∧  1o  <N  𝑦 ) ) ) | 
						
							| 31 | 30 2 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  →  𝜑 )  ↔  ( ( 𝑦  ∈  N  ∧  1o  <N  𝑦 )  →  𝜒 ) ) ) | 
						
							| 32 |  | pinn | ⊢ ( 𝑥  ∈  N  →  𝑥  ∈  ω ) | 
						
							| 33 |  | eleq1 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝑥  ∈  ω  ↔  suc  𝑦  ∈  ω ) ) | 
						
							| 34 |  | peano2b | ⊢ ( 𝑦  ∈  ω  ↔  suc  𝑦  ∈  ω ) | 
						
							| 35 | 33 34 | bitr4di | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝑥  ∈  ω  ↔  𝑦  ∈  ω ) ) | 
						
							| 36 | 32 35 | imbitrid | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝑥  ∈  N  →  𝑦  ∈  ω ) ) | 
						
							| 37 | 36 | adantrd | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  →  𝑦  ∈  ω ) ) | 
						
							| 38 |  | 1pi | ⊢ 1o  ∈  N | 
						
							| 39 |  | ltpiord | ⊢ ( ( 1o  ∈  N  ∧  𝑥  ∈  N )  →  ( 1o  <N  𝑥  ↔  1o  ∈  𝑥 ) ) | 
						
							| 40 | 38 39 | mpan | ⊢ ( 𝑥  ∈  N  →  ( 1o  <N  𝑥  ↔  1o  ∈  𝑥 ) ) | 
						
							| 41 | 40 | biimpa | ⊢ ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  →  1o  ∈  𝑥 ) | 
						
							| 42 |  | eleq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 1o  ∈  𝑥  ↔  1o  ∈  suc  𝑦 ) ) | 
						
							| 43 |  | elsuci | ⊢ ( 1o  ∈  suc  𝑦  →  ( 1o  ∈  𝑦  ∨  1o  =  𝑦 ) ) | 
						
							| 44 |  | ne0i | ⊢ ( 1o  ∈  𝑦  →  𝑦  ≠  ∅ ) | 
						
							| 45 |  | 0lt1o | ⊢ ∅  ∈  1o | 
						
							| 46 |  | eleq2 | ⊢ ( 1o  =  𝑦  →  ( ∅  ∈  1o  ↔  ∅  ∈  𝑦 ) ) | 
						
							| 47 | 45 46 | mpbii | ⊢ ( 1o  =  𝑦  →  ∅  ∈  𝑦 ) | 
						
							| 48 | 47 | ne0d | ⊢ ( 1o  =  𝑦  →  𝑦  ≠  ∅ ) | 
						
							| 49 | 44 48 | jaoi | ⊢ ( ( 1o  ∈  𝑦  ∨  1o  =  𝑦 )  →  𝑦  ≠  ∅ ) | 
						
							| 50 | 43 49 | syl | ⊢ ( 1o  ∈  suc  𝑦  →  𝑦  ≠  ∅ ) | 
						
							| 51 | 42 50 | biimtrdi | ⊢ ( 𝑥  =  suc  𝑦  →  ( 1o  ∈  𝑥  →  𝑦  ≠  ∅ ) ) | 
						
							| 52 | 41 51 | syl5 | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  →  𝑦  ≠  ∅ ) ) | 
						
							| 53 | 37 52 | jcad | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  →  ( 𝑦  ∈  ω  ∧  𝑦  ≠  ∅ ) ) ) | 
						
							| 54 |  | elni | ⊢ ( 𝑦  ∈  N  ↔  ( 𝑦  ∈  ω  ∧  𝑦  ≠  ∅ ) ) | 
						
							| 55 | 53 54 | imbitrrdi | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  →  𝑦  ∈  N ) ) | 
						
							| 56 |  | simpr | ⊢ ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  →  1o  <N  𝑥 ) | 
						
							| 57 |  | breq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 1o  <N  𝑥  ↔  1o  <N  suc  𝑦 ) ) | 
						
							| 58 | 56 57 | imbitrid | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  →  1o  <N  suc  𝑦 ) ) | 
						
							| 59 | 55 58 | jcad | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  →  ( 𝑦  ∈  N  ∧  1o  <N  suc  𝑦 ) ) ) | 
						
							| 60 |  | addclpi | ⊢ ( ( 𝑦  ∈  N  ∧  1o  ∈  N )  →  ( 𝑦  +N  1o )  ∈  N ) | 
						
							| 61 | 38 60 | mpan2 | ⊢ ( 𝑦  ∈  N  →  ( 𝑦  +N  1o )  ∈  N ) | 
						
							| 62 |  | addpiord | ⊢ ( ( 𝑦  ∈  N  ∧  1o  ∈  N )  →  ( 𝑦  +N  1o )  =  ( 𝑦  +o  1o ) ) | 
						
							| 63 | 38 62 | mpan2 | ⊢ ( 𝑦  ∈  N  →  ( 𝑦  +N  1o )  =  ( 𝑦  +o  1o ) ) | 
						
							| 64 |  | pion | ⊢ ( 𝑦  ∈  N  →  𝑦  ∈  On ) | 
						
							| 65 |  | oa1suc | ⊢ ( 𝑦  ∈  On  →  ( 𝑦  +o  1o )  =  suc  𝑦 ) | 
						
							| 66 | 64 65 | syl | ⊢ ( 𝑦  ∈  N  →  ( 𝑦  +o  1o )  =  suc  𝑦 ) | 
						
							| 67 | 63 66 | eqtrd | ⊢ ( 𝑦  ∈  N  →  ( 𝑦  +N  1o )  =  suc  𝑦 ) | 
						
							| 68 | 67 | eqeq2d | ⊢ ( 𝑦  ∈  N  →  ( 𝑥  =  ( 𝑦  +N  1o )  ↔  𝑥  =  suc  𝑦 ) ) | 
						
							| 69 | 68 | biimparc | ⊢ ( ( 𝑥  =  suc  𝑦  ∧  𝑦  ∈  N )  →  𝑥  =  ( 𝑦  +N  1o ) ) | 
						
							| 70 | 69 | eleq1d | ⊢ ( ( 𝑥  =  suc  𝑦  ∧  𝑦  ∈  N )  →  ( 𝑥  ∈  N  ↔  ( 𝑦  +N  1o )  ∈  N ) ) | 
						
							| 71 | 61 70 | imbitrrid | ⊢ ( ( 𝑥  =  suc  𝑦  ∧  𝑦  ∈  N )  →  ( 𝑦  ∈  N  →  𝑥  ∈  N ) ) | 
						
							| 72 | 71 | ex | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝑦  ∈  N  →  ( 𝑦  ∈  N  →  𝑥  ∈  N ) ) ) | 
						
							| 73 | 72 | pm2.43d | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝑦  ∈  N  →  𝑥  ∈  N ) ) | 
						
							| 74 | 57 | biimprd | ⊢ ( 𝑥  =  suc  𝑦  →  ( 1o  <N  suc  𝑦  →  1o  <N  𝑥 ) ) | 
						
							| 75 | 73 74 | anim12d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝑦  ∈  N  ∧  1o  <N  suc  𝑦 )  →  ( 𝑥  ∈  N  ∧  1o  <N  𝑥 ) ) ) | 
						
							| 76 | 59 75 | impbid | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  ↔  ( 𝑦  ∈  N  ∧  1o  <N  suc  𝑦 ) ) ) | 
						
							| 77 | 76 | imbi1d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  →  𝜑 )  ↔  ( ( 𝑦  ∈  N  ∧  1o  <N  suc  𝑦 )  →  𝜑 ) ) ) | 
						
							| 78 | 68 3 | biimtrrdi | ⊢ ( 𝑦  ∈  N  →  ( 𝑥  =  suc  𝑦  →  ( 𝜑  ↔  𝜃 ) ) ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝑦  ∈  N  ∧  1o  <N  suc  𝑦 )  →  ( 𝑥  =  suc  𝑦  →  ( 𝜑  ↔  𝜃 ) ) ) | 
						
							| 80 | 79 | com12 | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝑦  ∈  N  ∧  1o  <N  suc  𝑦 )  →  ( 𝜑  ↔  𝜃 ) ) ) | 
						
							| 81 | 80 | pm5.74d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( ( 𝑦  ∈  N  ∧  1o  <N  suc  𝑦 )  →  𝜑 )  ↔  ( ( 𝑦  ∈  N  ∧  1o  <N  suc  𝑦 )  →  𝜃 ) ) ) | 
						
							| 82 | 77 81 | bitrd | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  →  𝜑 )  ↔  ( ( 𝑦  ∈  N  ∧  1o  <N  suc  𝑦 )  →  𝜃 ) ) ) | 
						
							| 83 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  N  ↔  𝐴  ∈  N ) ) | 
						
							| 84 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( 1o  <N  𝑥  ↔  1o  <N  𝐴 ) ) | 
						
							| 85 | 83 84 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  ↔  ( 𝐴  ∈  N  ∧  1o  <N  𝐴 ) ) ) | 
						
							| 86 | 85 4 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑥  ∈  N  ∧  1o  <N  𝑥 )  →  𝜑 )  ↔  ( ( 𝐴  ∈  N  ∧  1o  <N  𝐴 )  →  𝜏 ) ) ) | 
						
							| 87 | 5 | 2a1i | ⊢ ( 1o  ∈  ω  →  ( ( 1o  ∈  N  ∧  1o  <N  1o )  →  𝜓 ) ) | 
						
							| 88 |  | ltpiord | ⊢ ( ( 1o  ∈  N  ∧  𝑦  ∈  N )  →  ( 1o  <N  𝑦  ↔  1o  ∈  𝑦 ) ) | 
						
							| 89 | 38 88 | mpan | ⊢ ( 𝑦  ∈  N  →  ( 1o  <N  𝑦  ↔  1o  ∈  𝑦 ) ) | 
						
							| 90 | 89 | pm5.32i | ⊢ ( ( 𝑦  ∈  N  ∧  1o  <N  𝑦 )  ↔  ( 𝑦  ∈  N  ∧  1o  ∈  𝑦 ) ) | 
						
							| 91 | 90 | simplbi2 | ⊢ ( 𝑦  ∈  N  →  ( 1o  ∈  𝑦  →  ( 𝑦  ∈  N  ∧  1o  <N  𝑦 ) ) ) | 
						
							| 92 | 91 | imim1d | ⊢ ( 𝑦  ∈  N  →  ( ( ( 𝑦  ∈  N  ∧  1o  <N  𝑦 )  →  𝜒 )  →  ( 1o  ∈  𝑦  →  𝜒 ) ) ) | 
						
							| 93 |  | ltrelpi | ⊢  <N   ⊆  ( N  ×  N ) | 
						
							| 94 | 93 | brel | ⊢ ( 1o  <N  suc  𝑦  →  ( 1o  ∈  N  ∧  suc  𝑦  ∈  N ) ) | 
						
							| 95 |  | ltpiord | ⊢ ( ( 1o  ∈  N  ∧  suc  𝑦  ∈  N )  →  ( 1o  <N  suc  𝑦  ↔  1o  ∈  suc  𝑦 ) ) | 
						
							| 96 | 94 95 | syl | ⊢ ( 1o  <N  suc  𝑦  →  ( 1o  <N  suc  𝑦  ↔  1o  ∈  suc  𝑦 ) ) | 
						
							| 97 | 96 | ibi | ⊢ ( 1o  <N  suc  𝑦  →  1o  ∈  suc  𝑦 ) | 
						
							| 98 | 7 | eqvinc | ⊢ ( 1o  =  𝑦  ↔  ∃ 𝑥 ( 𝑥  =  1o  ∧  𝑥  =  𝑦 ) ) | 
						
							| 99 | 98 2 9 | gencl | ⊢ ( 1o  =  𝑦  →  𝜒 ) | 
						
							| 100 |  | jao | ⊢ ( ( 1o  ∈  𝑦  →  𝜒 )  →  ( ( 1o  =  𝑦  →  𝜒 )  →  ( ( 1o  ∈  𝑦  ∨  1o  =  𝑦 )  →  𝜒 ) ) ) | 
						
							| 101 | 99 100 | mpi | ⊢ ( ( 1o  ∈  𝑦  →  𝜒 )  →  ( ( 1o  ∈  𝑦  ∨  1o  =  𝑦 )  →  𝜒 ) ) | 
						
							| 102 | 43 101 | syl5 | ⊢ ( ( 1o  ∈  𝑦  →  𝜒 )  →  ( 1o  ∈  suc  𝑦  →  𝜒 ) ) | 
						
							| 103 | 97 102 | syl5 | ⊢ ( ( 1o  ∈  𝑦  →  𝜒 )  →  ( 1o  <N  suc  𝑦  →  𝜒 ) ) | 
						
							| 104 | 92 103 | syl6com | ⊢ ( ( ( 𝑦  ∈  N  ∧  1o  <N  𝑦 )  →  𝜒 )  →  ( 𝑦  ∈  N  →  ( 1o  <N  suc  𝑦  →  𝜒 ) ) ) | 
						
							| 105 | 104 | impd | ⊢ ( ( ( 𝑦  ∈  N  ∧  1o  <N  𝑦 )  →  𝜒 )  →  ( ( 𝑦  ∈  N  ∧  1o  <N  suc  𝑦 )  →  𝜒 ) ) | 
						
							| 106 | 18 | sseq1i | ⊢ ( 1o  ⊆  𝑦  ↔  suc  ∅  ⊆  𝑦 ) | 
						
							| 107 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 108 |  | sucssel | ⊢ ( ∅  ∈  V  →  ( suc  ∅  ⊆  𝑦  →  ∅  ∈  𝑦 ) ) | 
						
							| 109 | 107 108 | ax-mp | ⊢ ( suc  ∅  ⊆  𝑦  →  ∅  ∈  𝑦 ) | 
						
							| 110 | 106 109 | sylbi | ⊢ ( 1o  ⊆  𝑦  →  ∅  ∈  𝑦 ) | 
						
							| 111 |  | elni2 | ⊢ ( 𝑦  ∈  N  ↔  ( 𝑦  ∈  ω  ∧  ∅  ∈  𝑦 ) ) | 
						
							| 112 | 111 6 | sylbir | ⊢ ( ( 𝑦  ∈  ω  ∧  ∅  ∈  𝑦 )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 113 | 110 112 | sylan2 | ⊢ ( ( 𝑦  ∈  ω  ∧  1o  ⊆  𝑦 )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 114 | 105 113 | syl9r | ⊢ ( ( 𝑦  ∈  ω  ∧  1o  ⊆  𝑦 )  →  ( ( ( 𝑦  ∈  N  ∧  1o  <N  𝑦 )  →  𝜒 )  →  ( ( 𝑦  ∈  N  ∧  1o  <N  suc  𝑦 )  →  𝜃 ) ) ) | 
						
							| 115 | 114 | adantlr | ⊢ ( ( ( 𝑦  ∈  ω  ∧  1o  ∈  ω )  ∧  1o  ⊆  𝑦 )  →  ( ( ( 𝑦  ∈  N  ∧  1o  <N  𝑦 )  →  𝜒 )  →  ( ( 𝑦  ∈  N  ∧  1o  <N  suc  𝑦 )  →  𝜃 ) ) ) | 
						
							| 116 | 27 31 82 86 87 115 | findsg | ⊢ ( ( ( 𝐴  ∈  ω  ∧  1o  ∈  ω )  ∧  1o  ⊆  𝐴 )  →  ( ( 𝐴  ∈  N  ∧  1o  <N  𝐴 )  →  𝜏 ) ) | 
						
							| 117 | 23 116 | mpanl2 | ⊢ ( ( 𝐴  ∈  ω  ∧  1o  ⊆  𝐴 )  →  ( ( 𝐴  ∈  N  ∧  1o  <N  𝐴 )  →  𝜏 ) ) | 
						
							| 118 | 13 22 117 | syl2anc | ⊢ ( 𝐴  ∈  N  →  ( ( 𝐴  ∈  N  ∧  1o  <N  𝐴 )  →  𝜏 ) ) | 
						
							| 119 | 118 | expd | ⊢ ( 𝐴  ∈  N  →  ( 𝐴  ∈  N  →  ( 1o  <N  𝐴  →  𝜏 ) ) ) | 
						
							| 120 | 119 | pm2.43i | ⊢ ( 𝐴  ∈  N  →  ( 1o  <N  𝐴  →  𝜏 ) ) | 
						
							| 121 |  | nlt1pi | ⊢ ¬  𝐴  <N  1o | 
						
							| 122 |  | ltsopi | ⊢  <N   Or  N | 
						
							| 123 |  | sotric | ⊢ ( (  <N   Or  N  ∧  ( 𝐴  ∈  N  ∧  1o  ∈  N ) )  →  ( 𝐴  <N  1o  ↔  ¬  ( 𝐴  =  1o  ∨  1o  <N  𝐴 ) ) ) | 
						
							| 124 | 122 123 | mpan | ⊢ ( ( 𝐴  ∈  N  ∧  1o  ∈  N )  →  ( 𝐴  <N  1o  ↔  ¬  ( 𝐴  =  1o  ∨  1o  <N  𝐴 ) ) ) | 
						
							| 125 | 38 124 | mpan2 | ⊢ ( 𝐴  ∈  N  →  ( 𝐴  <N  1o  ↔  ¬  ( 𝐴  =  1o  ∨  1o  <N  𝐴 ) ) ) | 
						
							| 126 | 121 125 | mtbii | ⊢ ( 𝐴  ∈  N  →  ¬  ¬  ( 𝐴  =  1o  ∨  1o  <N  𝐴 ) ) | 
						
							| 127 | 126 | notnotrd | ⊢ ( 𝐴  ∈  N  →  ( 𝐴  =  1o  ∨  1o  <N  𝐴 ) ) | 
						
							| 128 | 12 120 127 | mpjaod | ⊢ ( 𝐴  ∈  N  →  𝜏 ) |