| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sonr | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  𝐵  ∈  𝐴 )  →  ¬  𝐵 𝑅 𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝐵  =  𝐶  →  ( 𝐵 𝑅 𝐵  ↔  𝐵 𝑅 𝐶 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							notbid | 
							⊢ ( 𝐵  =  𝐶  →  ( ¬  𝐵 𝑅 𝐵  ↔  ¬  𝐵 𝑅 𝐶 ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							syl5ibcom | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( 𝐵  =  𝐶  →  ¬  𝐵 𝑅 𝐶 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantrr | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐵  =  𝐶  →  ¬  𝐵 𝑅 𝐶 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							so2nr | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ¬  ( 𝐵 𝑅 𝐶  ∧  𝐶 𝑅 𝐵 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							imnan | 
							⊢ ( ( 𝐵 𝑅 𝐶  →  ¬  𝐶 𝑅 𝐵 )  ↔  ¬  ( 𝐵 𝑅 𝐶  ∧  𝐶 𝑅 𝐵 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylibr | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐵 𝑅 𝐶  →  ¬  𝐶 𝑅 𝐵 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							con2d | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐶 𝑅 𝐵  →  ¬  𝐵 𝑅 𝐶 ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							jaod | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( ( 𝐵  =  𝐶  ∨  𝐶 𝑅 𝐵 )  →  ¬  𝐵 𝑅 𝐶 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							solin | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐵 𝑅 𝐶  ∨  𝐵  =  𝐶  ∨  𝐶 𝑅 𝐵 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							3orass | 
							⊢ ( ( 𝐵 𝑅 𝐶  ∨  𝐵  =  𝐶  ∨  𝐶 𝑅 𝐵 )  ↔  ( 𝐵 𝑅 𝐶  ∨  ( 𝐵  =  𝐶  ∨  𝐶 𝑅 𝐵 ) ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							sylib | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐵 𝑅 𝐶  ∨  ( 𝐵  =  𝐶  ∨  𝐶 𝑅 𝐵 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ord | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( ¬  𝐵 𝑅 𝐶  →  ( 𝐵  =  𝐶  ∨  𝐶 𝑅 𝐵 ) ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							impbid | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( ( 𝐵  =  𝐶  ∨  𝐶 𝑅 𝐵 )  ↔  ¬  𝐵 𝑅 𝐶 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							con2bid | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐵 𝑅 𝐶  ↔  ¬  ( 𝐵  =  𝐶  ∨  𝐶 𝑅 𝐵 ) ) )  |