Metamath Proof Explorer


Theorem breq2

Description: Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993)

Ref Expression
Assertion breq2 ( 𝐴 = 𝐵 → ( 𝐶 𝑅 𝐴𝐶 𝑅 𝐵 ) )

Proof

Step Hyp Ref Expression
1 opeq2 ( 𝐴 = 𝐵 → ⟨ 𝐶 , 𝐴 ⟩ = ⟨ 𝐶 , 𝐵 ⟩ )
2 1 eleq1d ( 𝐴 = 𝐵 → ( ⟨ 𝐶 , 𝐴 ⟩ ∈ 𝑅 ↔ ⟨ 𝐶 , 𝐵 ⟩ ∈ 𝑅 ) )
3 df-br ( 𝐶 𝑅 𝐴 ↔ ⟨ 𝐶 , 𝐴 ⟩ ∈ 𝑅 )
4 df-br ( 𝐶 𝑅 𝐵 ↔ ⟨ 𝐶 , 𝐵 ⟩ ∈ 𝑅 )
5 2 3 4 3bitr4g ( 𝐴 = 𝐵 → ( 𝐶 𝑅 𝐴𝐶 𝑅 𝐵 ) )