Metamath Proof Explorer


Theorem breq12

Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996)

Ref Expression
Assertion breq12 ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐷 ) )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝐴 = 𝐵 → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐶 ) )
2 breq2 ( 𝐶 = 𝐷 → ( 𝐵 𝑅 𝐶𝐵 𝑅 𝐷 ) )
3 1 2 sylan9bb ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐷 ) )