Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | breq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 𝑅 𝐶 ↔ 𝐵 𝑅 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 𝑅 𝐶 ↔ 𝐵 𝑅 𝐶 ) ) | |
2 | breq2 | ⊢ ( 𝐶 = 𝐷 → ( 𝐵 𝑅 𝐶 ↔ 𝐵 𝑅 𝐷 ) ) | |
3 | 1 2 | sylan9bb | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 𝑅 𝐶 ↔ 𝐵 𝑅 𝐷 ) ) |