Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | breq12 | |- ( ( A = B /\ C = D ) -> ( A R C <-> B R D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | |- ( A = B -> ( A R C <-> B R C ) ) |
|
2 | breq2 | |- ( C = D -> ( B R C <-> B R D ) ) |
|
3 | 1 2 | sylan9bb | |- ( ( A = B /\ C = D ) -> ( A R C <-> B R D ) ) |