Metamath Proof Explorer


Theorem jaod

Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994)

Ref Expression
Hypotheses jaod.1 ( 𝜑 → ( 𝜓𝜒 ) )
jaod.2 ( 𝜑 → ( 𝜃𝜒 ) )
Assertion jaod ( 𝜑 → ( ( 𝜓𝜃 ) → 𝜒 ) )

Proof

Step Hyp Ref Expression
1 jaod.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 jaod.2 ( 𝜑 → ( 𝜃𝜒 ) )
3 1 com12 ( 𝜓 → ( 𝜑𝜒 ) )
4 2 com12 ( 𝜃 → ( 𝜑𝜒 ) )
5 3 4 jaoi ( ( 𝜓𝜃 ) → ( 𝜑𝜒 ) )
6 5 com12 ( 𝜑 → ( ( 𝜓𝜃 ) → 𝜒 ) )