| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 𝑅 𝑦 ↔ 𝐵 𝑅 𝑦 ) ) |
| 2 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝑦 ↔ 𝐵 = 𝑦 ) ) |
| 3 |
|
breq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝐵 ) ) |
| 4 |
1 2 3
|
3orbi123d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝐵 𝑅 𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦 𝑅 𝐵 ) ) ) |
| 5 |
4
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑅 Or 𝐴 → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ↔ ( 𝑅 Or 𝐴 → ( 𝐵 𝑅 𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦 𝑅 𝐵 ) ) ) ) |
| 6 |
|
breq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐵 𝑅 𝑦 ↔ 𝐵 𝑅 𝐶 ) ) |
| 7 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐶 ) ) |
| 8 |
|
breq1 |
⊢ ( 𝑦 = 𝐶 → ( 𝑦 𝑅 𝐵 ↔ 𝐶 𝑅 𝐵 ) ) |
| 9 |
6 7 8
|
3orbi123d |
⊢ ( 𝑦 = 𝐶 → ( ( 𝐵 𝑅 𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦 𝑅 𝐵 ) ↔ ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( 𝑅 Or 𝐴 → ( 𝐵 𝑅 𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦 𝑅 𝐵 ) ) ↔ ( 𝑅 Or 𝐴 → ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) ) |
| 11 |
|
df-so |
⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 12 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝑅 𝑦 ↔ 𝑧 𝑅 𝑦 ) ) |
| 13 |
|
equequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑧 = 𝑦 ) ) |
| 14 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑧 ) ) |
| 15 |
12 13 14
|
3orbi123d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑧 𝑅 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 𝑅 𝑧 ) ) ) |
| 16 |
15
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑧 𝑅 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 𝑅 𝑧 ) ) ) |
| 17 |
16
|
rspw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 18 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑧 ) ) |
| 19 |
|
equequ2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) |
| 20 |
|
breq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑧 𝑅 𝑥 ) ) |
| 21 |
18 19 20
|
3orbi123d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ) ) |
| 22 |
21
|
rspw |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) → ( 𝑦 ∈ 𝐴 → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 23 |
17 22
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐴 → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) ) |
| 24 |
23
|
impd |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 25 |
11 24
|
simplbiim |
⊢ ( 𝑅 Or 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 26 |
25
|
com12 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑅 Or 𝐴 → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 27 |
5 10 26
|
vtocl2ga |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑅 Or 𝐴 → ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| 28 |
27
|
impcom |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) |