Metamath Proof Explorer


Theorem simplbiim

Description: Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Wolf Lammen, 26-Mar-2022)

Ref Expression
Hypotheses simplbiim.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
simplbiim.2 ( 𝜒𝜃 )
Assertion simplbiim ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 simplbiim.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
2 simplbiim.2 ( 𝜒𝜃 )
3 1 simprbi ( 𝜑𝜒 )
4 3 2 syl ( 𝜑𝜃 )