Metamath Proof Explorer


Theorem solin

Description: A strict order relation is linear (satisfies trichotomy). (Contributed by NM, 21-Jan-1996)

Ref Expression
Assertion solin ROrABACABRCB=CCRB

Proof

Step Hyp Ref Expression
1 breq1 x=BxRyBRy
2 eqeq1 x=Bx=yB=y
3 breq2 x=ByRxyRB
4 1 2 3 3orbi123d x=BxRyx=yyRxBRyB=yyRB
5 4 imbi2d x=BROrAxRyx=yyRxROrABRyB=yyRB
6 breq2 y=CBRyBRC
7 eqeq2 y=CB=yB=C
8 breq1 y=CyRBCRB
9 6 7 8 3orbi123d y=CBRyB=yyRBBRCB=CCRB
10 9 imbi2d y=CROrABRyB=yyRBROrABRCB=CCRB
11 df-so ROrARPoAxAyAxRyx=yyRx
12 breq1 x=zxRyzRy
13 equequ1 x=zx=yz=y
14 breq2 x=zyRxyRz
15 12 13 14 3orbi123d x=zxRyx=yyRxzRyz=yyRz
16 15 ralbidv x=zyAxRyx=yyRxyAzRyz=yyRz
17 16 rspw xAyAxRyx=yyRxxAyAxRyx=yyRx
18 breq2 y=zxRyxRz
19 equequ2 y=zx=yx=z
20 breq1 y=zyRxzRx
21 18 19 20 3orbi123d y=zxRyx=yyRxxRzx=zzRx
22 21 rspw yAxRyx=yyRxyAxRyx=yyRx
23 17 22 syl6 xAyAxRyx=yyRxxAyAxRyx=yyRx
24 23 impd xAyAxRyx=yyRxxAyAxRyx=yyRx
25 11 24 simplbiim ROrAxAyAxRyx=yyRx
26 25 com12 xAyAROrAxRyx=yyRx
27 5 10 26 vtocl2ga BACAROrABRCB=CCRB
28 27 impcom ROrABACABRCB=CCRB