Metamath Proof Explorer


Theorem sotric

Description: A strict order relation satisfies strict trichotomy. (Contributed by NM, 19-Feb-1996)

Ref Expression
Assertion sotric ROrABACABRC¬B=CCRB

Proof

Step Hyp Ref Expression
1 sonr ROrABA¬BRB
2 breq2 B=CBRBBRC
3 2 notbid B=C¬BRB¬BRC
4 1 3 syl5ibcom ROrABAB=C¬BRC
5 4 adantrr ROrABACAB=C¬BRC
6 so2nr ROrABACA¬BRCCRB
7 imnan BRC¬CRB¬BRCCRB
8 6 7 sylibr ROrABACABRC¬CRB
9 8 con2d ROrABACACRB¬BRC
10 5 9 jaod ROrABACAB=CCRB¬BRC
11 solin ROrABACABRCB=CCRB
12 3orass BRCB=CCRBBRCB=CCRB
13 11 12 sylib ROrABACABRCB=CCRB
14 13 ord ROrABACA¬BRCB=CCRB
15 10 14 impbid ROrABACAB=CCRB¬BRC
16 15 con2bid ROrABACABRC¬B=CCRB