| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sonr | 
							 |-  ( ( R Or A /\ B e. A ) -> -. B R B )  | 
						
						
							| 2 | 
							
								
							 | 
							breq2 | 
							 |-  ( B = C -> ( B R B <-> B R C ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							notbid | 
							 |-  ( B = C -> ( -. B R B <-> -. B R C ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							syl5ibcom | 
							 |-  ( ( R Or A /\ B e. A ) -> ( B = C -> -. B R C ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantrr | 
							 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B = C -> -. B R C ) )  | 
						
						
							| 6 | 
							
								
							 | 
							so2nr | 
							 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> -. ( B R C /\ C R B ) )  | 
						
						
							| 7 | 
							
								
							 | 
							imnan | 
							 |-  ( ( B R C -> -. C R B ) <-> -. ( B R C /\ C R B ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylibr | 
							 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C -> -. C R B ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							con2d | 
							 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( C R B -> -. B R C ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							jaod | 
							 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( ( B = C \/ C R B ) -> -. B R C ) )  | 
						
						
							| 11 | 
							
								
							 | 
							solin | 
							 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C \/ B = C \/ C R B ) )  | 
						
						
							| 12 | 
							
								
							 | 
							3orass | 
							 |-  ( ( B R C \/ B = C \/ C R B ) <-> ( B R C \/ ( B = C \/ C R B ) ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							sylib | 
							 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C \/ ( B = C \/ C R B ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ord | 
							 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( -. B R C -> ( B = C \/ C R B ) ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							impbid | 
							 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( ( B = C \/ C R B ) <-> -. B R C ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							con2bid | 
							 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C <-> -. ( B = C \/ C R B ) ) )  |