Metamath Proof Explorer


Theorem so2nr

Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996)

Ref Expression
Assertion so2nr
|- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> -. ( B R C /\ C R B ) )

Proof

Step Hyp Ref Expression
1 sopo
 |-  ( R Or A -> R Po A )
2 po2nr
 |-  ( ( R Po A /\ ( B e. A /\ C e. A ) ) -> -. ( B R C /\ C R B ) )
3 1 2 sylan
 |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> -. ( B R C /\ C R B ) )