Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | con2d.1 | |- ( ph -> ( ps -> -. ch ) ) |
|
Assertion | con2d | |- ( ph -> ( ch -> -. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2d.1 | |- ( ph -> ( ps -> -. ch ) ) |
|
2 | notnotr | |- ( -. -. ps -> ps ) |
|
3 | 2 1 | syl5 | |- ( ph -> ( -. -. ps -> -. ch ) ) |
4 | 3 | con4d | |- ( ph -> ( ch -> -. ps ) ) |