Metamath Proof Explorer


Theorem con2

Description: Contraposition. Theorem *2.03 of WhiteheadRussell p. 100. (Contributed by NM, 29-Dec-1992) (Proof shortened by Wolf Lammen, 12-Feb-2013)

Ref Expression
Assertion con2
|- ( ( ph -> -. ps ) -> ( ps -> -. ph ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ( ph -> -. ps ) -> ( ph -> -. ps ) )
2 1 con2d
 |-  ( ( ph -> -. ps ) -> ( ps -> -. ph ) )