Description: Contraposition. Theorem *2.03 of WhiteheadRussell p. 100. (Contributed by NM, 29-Dec-1992) (Proof shortened by Wolf Lammen, 12-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | con2 | |- ( ( ph -> -. ps ) -> ( ps -> -. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( ( ph -> -. ps ) -> ( ph -> -. ps ) ) |
|
2 | 1 | con2d | |- ( ( ph -> -. ps ) -> ( ps -> -. ph ) ) |