Metamath Proof Explorer


Theorem mt2d

Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994)

Ref Expression
Hypotheses mt2d.1
|- ( ph -> ch )
mt2d.2
|- ( ph -> ( ps -> -. ch ) )
Assertion mt2d
|- ( ph -> -. ps )

Proof

Step Hyp Ref Expression
1 mt2d.1
 |-  ( ph -> ch )
2 mt2d.2
 |-  ( ph -> ( ps -> -. ch ) )
3 2 con2d
 |-  ( ph -> ( ch -> -. ps ) )
4 1 3 mpd
 |-  ( ph -> -. ps )