Metamath Proof Explorer


Theorem 3orass

Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994)

Ref Expression
Assertion 3orass
|- ( ( ph \/ ps \/ ch ) <-> ( ph \/ ( ps \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 df-3or
 |-  ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) )
2 orass
 |-  ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ( ps \/ ch ) ) )
3 1 2 bitri
 |-  ( ( ph \/ ps \/ ch ) <-> ( ph \/ ( ps \/ ch ) ) )