Metamath Proof Explorer


Theorem sotrieq

Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion sotrieq ROrABACAB=C¬BRCCRB

Proof

Step Hyp Ref Expression
1 sonr ROrABA¬BRB
2 1 adantrr ROrABACA¬BRB
3 pm1.2 BRBBRBBRB
4 2 3 nsyl ROrABACA¬BRBBRB
5 breq2 B=CBRBBRC
6 breq1 B=CBRBCRB
7 5 6 orbi12d B=CBRBBRBBRCCRB
8 7 notbid B=C¬BRBBRB¬BRCCRB
9 4 8 syl5ibcom ROrABACAB=C¬BRCCRB
10 9 con2d ROrABACABRCCRB¬B=C
11 solin ROrABACABRCB=CCRB
12 3orass BRCB=CCRBBRCB=CCRB
13 11 12 sylib ROrABACABRCB=CCRB
14 or12 BRCB=CCRBB=CBRCCRB
15 13 14 sylib ROrABACAB=CBRCCRB
16 15 ord ROrABACA¬B=CBRCCRB
17 10 16 impbid ROrABACABRCCRB¬B=C
18 17 con2bid ROrABACAB=C¬BRCCRB