Metamath Proof Explorer


Theorem ltsopi

Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996) (Proof shortened by Mario Carneiro, 10-Jul-2014) (New usage is discouraged.)

Ref Expression
Assertion ltsopi <N Or N

Proof

Step Hyp Ref Expression
1 df-ni N = ( ω ∖ { ∅ } )
2 difss ( ω ∖ { ∅ } ) ⊆ ω
3 omsson ω ⊆ On
4 2 3 sstri ( ω ∖ { ∅ } ) ⊆ On
5 1 4 eqsstri N ⊆ On
6 epweon E We On
7 weso ( E We On → E Or On )
8 6 7 ax-mp E Or On
9 soss ( N ⊆ On → ( E Or On → E Or N ) )
10 5 8 9 mp2 E Or N
11 df-lti <N = ( E ∩ ( N × N ) )
12 soeq1 ( <N = ( E ∩ ( N × N ) ) → ( <N Or N ↔ ( E ∩ ( N × N ) ) Or N ) )
13 11 12 ax-mp ( <N Or N ↔ ( E ∩ ( N × N ) ) Or N )
14 soinxp ( E Or N ↔ ( E ∩ ( N × N ) ) Or N )
15 13 14 bitr4i ( <N Or N ↔ E Or N )
16 10 15 mpbir <N Or N