Metamath Proof Explorer


Theorem soss

Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion soss ( 𝐴𝐵 → ( 𝑅 Or 𝐵𝑅 Or 𝐴 ) )

Proof

Step Hyp Ref Expression
1 poss ( 𝐴𝐵 → ( 𝑅 Po 𝐵𝑅 Po 𝐴 ) )
2 ss2ralv ( 𝐴𝐵 → ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ) )
3 1 2 anim12d ( 𝐴𝐵 → ( ( 𝑅 Po 𝐵 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ) → ( 𝑅 Po 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ) ) )
4 df-so ( 𝑅 Or 𝐵 ↔ ( 𝑅 Po 𝐵 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ) )
5 df-so ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ) )
6 3 4 5 3imtr4g ( 𝐴𝐵 → ( 𝑅 Or 𝐵𝑅 Or 𝐴 ) )