Step |
Hyp |
Ref |
Expression |
1 |
|
onfr |
⊢ E Fr On |
2 |
|
df-po |
⊢ ( E Po On ↔ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
3 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
4 |
|
ordirr |
⊢ ( Ord 𝑥 → ¬ 𝑥 ∈ 𝑥 ) |
5 |
3 4
|
syl |
⊢ ( 𝑥 ∈ On → ¬ 𝑥 ∈ 𝑥 ) |
6 |
|
epel |
⊢ ( 𝑥 E 𝑥 ↔ 𝑥 ∈ 𝑥 ) |
7 |
5 6
|
sylnibr |
⊢ ( 𝑥 ∈ On → ¬ 𝑥 E 𝑥 ) |
8 |
|
ontr1 |
⊢ ( 𝑧 ∈ On → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
9 |
|
epel |
⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) |
10 |
|
epel |
⊢ ( 𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧 ) |
11 |
9 10
|
anbi12i |
⊢ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) ) |
12 |
|
epel |
⊢ ( 𝑥 E 𝑧 ↔ 𝑥 ∈ 𝑧 ) |
13 |
8 11 12
|
3imtr4g |
⊢ ( 𝑧 ∈ On → ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) |
14 |
7 13
|
anim12i |
⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
15 |
14
|
ralrimiva |
⊢ ( 𝑥 ∈ On → ∀ 𝑧 ∈ On ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
16 |
15
|
ralrimivw |
⊢ ( 𝑥 ∈ On → ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
17 |
2 16
|
mprgbir |
⊢ E Po On |
18 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
19 |
|
ordtri3or |
⊢ ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
20 |
|
biid |
⊢ ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) |
21 |
|
epel |
⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) |
22 |
9 20 21
|
3orbi123i |
⊢ ( ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ↔ ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
23 |
19 22
|
sylibr |
⊢ ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) |
24 |
3 18 23
|
syl2an |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) |
25 |
24
|
rgen2 |
⊢ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) |
26 |
|
df-so |
⊢ ( E Or On ↔ ( E Po On ∧ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) ) |
27 |
17 25 26
|
mpbir2an |
⊢ E Or On |
28 |
|
df-we |
⊢ ( E We On ↔ ( E Fr On ∧ E Or On ) ) |
29 |
1 27 28
|
mpbir2an |
⊢ E We On |