Metamath Proof Explorer


Theorem epweon

Description: The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of Mendelson p. 244. (Contributed by NM, 1-Nov-2003) Avoid ax-un . (Revised by BTernaryTau, 30-Nov-2024)

Ref Expression
Assertion epweon E We On

Proof

Step Hyp Ref Expression
1 onfr E Fr On
2 df-po ( E Po On ↔ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) )
3 eloni ( 𝑥 ∈ On → Ord 𝑥 )
4 ordirr ( Ord 𝑥 → ¬ 𝑥𝑥 )
5 3 4 syl ( 𝑥 ∈ On → ¬ 𝑥𝑥 )
6 epel ( 𝑥 E 𝑥𝑥𝑥 )
7 5 6 sylnibr ( 𝑥 ∈ On → ¬ 𝑥 E 𝑥 )
8 ontr1 ( 𝑧 ∈ On → ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
9 epel ( 𝑥 E 𝑦𝑥𝑦 )
10 epel ( 𝑦 E 𝑧𝑦𝑧 )
11 9 10 anbi12i ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) ↔ ( 𝑥𝑦𝑦𝑧 ) )
12 epel ( 𝑥 E 𝑧𝑥𝑧 )
13 8 11 12 3imtr4g ( 𝑧 ∈ On → ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) )
14 7 13 anim12i ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) )
15 14 ralrimiva ( 𝑥 ∈ On → ∀ 𝑧 ∈ On ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) )
16 15 ralrimivw ( 𝑥 ∈ On → ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) )
17 2 16 mprgbir E Po On
18 eloni ( 𝑦 ∈ On → Ord 𝑦 )
19 ordtri3or ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥𝑦𝑥 = 𝑦𝑦𝑥 ) )
20 biid ( 𝑥 = 𝑦𝑥 = 𝑦 )
21 epel ( 𝑦 E 𝑥𝑦𝑥 )
22 9 20 21 3orbi123i ( ( 𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥 ) ↔ ( 𝑥𝑦𝑥 = 𝑦𝑦𝑥 ) )
23 19 22 sylibr ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥 ) )
24 3 18 23 syl2an ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥 ) )
25 24 rgen2 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥 )
26 df-so ( E Or On ↔ ( E Po On ∧ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥 ) ) )
27 17 25 26 mpbir2an E Or On
28 df-we ( E We On ↔ ( E Fr On ∧ E Or On ) )
29 1 27 28 mpbir2an E We On