Metamath Proof Explorer


Theorem mpbir2an

Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005)

Ref Expression
Hypotheses mpbir2an.1 𝜓
mpbir2an.2 𝜒
mpbir2an.maj ( 𝜑 ↔ ( 𝜓𝜒 ) )
Assertion mpbir2an 𝜑

Proof

Step Hyp Ref Expression
1 mpbir2an.1 𝜓
2 mpbir2an.2 𝜒
3 mpbir2an.maj ( 𝜑 ↔ ( 𝜓𝜒 ) )
4 1 3 mpbiran ( 𝜑𝜒 )
5 2 4 mpbir 𝜑