Metamath Proof Explorer


Theorem mpbi2and

Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Hypotheses mpbi2and.1 ( 𝜑𝜓 )
mpbi2and.2 ( 𝜑𝜒 )
mpbi2and.3 ( 𝜑 → ( ( 𝜓𝜒 ) ↔ 𝜃 ) )
Assertion mpbi2and ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 mpbi2and.1 ( 𝜑𝜓 )
2 mpbi2and.2 ( 𝜑𝜒 )
3 mpbi2and.3 ( 𝜑 → ( ( 𝜓𝜒 ) ↔ 𝜃 ) )
4 1 2 jca ( 𝜑 → ( 𝜓𝜒 ) )
5 4 3 mpbid ( 𝜑𝜃 )