Metamath Proof Explorer
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011) (Proof shortened by Wolf Lammen, 24-Nov-2012)
|
|
Ref |
Expression |
|
Hypotheses |
mpbi2and.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
mpbi2and.2 |
⊢ ( 𝜑 → 𝜒 ) |
|
|
mpbi2and.3 |
⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜃 ) ) |
|
Assertion |
mpbi2and |
⊢ ( 𝜑 → 𝜃 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpbi2and.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
mpbi2and.2 |
⊢ ( 𝜑 → 𝜒 ) |
3 |
|
mpbi2and.3 |
⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜃 ) ) |
4 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) |
5 |
4 3
|
mpbid |
⊢ ( 𝜑 → 𝜃 ) |