Metamath Proof Explorer


Theorem mpbi2and

Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Hypotheses mpbi2and.1
|- ( ph -> ps )
mpbi2and.2
|- ( ph -> ch )
mpbi2and.3
|- ( ph -> ( ( ps /\ ch ) <-> th ) )
Assertion mpbi2and
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 mpbi2and.1
 |-  ( ph -> ps )
2 mpbi2and.2
 |-  ( ph -> ch )
3 mpbi2and.3
 |-  ( ph -> ( ( ps /\ ch ) <-> th ) )
4 1 2 jca
 |-  ( ph -> ( ps /\ ch ) )
5 4 3 mpbid
 |-  ( ph -> th )