Metamath Proof Explorer
Definition df-we
Description: Define the well-ordering predicate. For an alternate definition, see
dfwe2 . (Contributed by NM, 3-Apr-1994)
|
|
Ref |
Expression |
|
Assertion |
df-we |
⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ) |
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cR |
⊢ 𝑅 |
| 1 |
|
cA |
⊢ 𝐴 |
| 2 |
1 0
|
wwe |
⊢ 𝑅 We 𝐴 |
| 3 |
1 0
|
wfr |
⊢ 𝑅 Fr 𝐴 |
| 4 |
1 0
|
wor |
⊢ 𝑅 Or 𝐴 |
| 5 |
3 4
|
wa |
⊢ ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) |
| 6 |
2 5
|
wb |
⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ) |