Metamath Proof Explorer


Theorem dffr6

Description: Alternate definition of df-fr . See dffr5 for a definition without dummy variables (but note that their equivalence uses ax-sep ). (Contributed by BJ, 16-Nov-2024)

Ref Expression
Assertion dffr6 ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 )

Proof

Step Hyp Ref Expression
1 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
2 1 bicomi ( 𝑥𝐴𝑥 ∈ 𝒫 𝐴 )
3 velsn ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ )
4 3 bicomi ( 𝑥 = ∅ ↔ 𝑥 ∈ { ∅ } )
5 4 necon3abii ( 𝑥 ≠ ∅ ↔ ¬ 𝑥 ∈ { ∅ } )
6 2 5 anbi12i ( ( 𝑥𝐴𝑥 ≠ ∅ ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ { ∅ } ) )
7 eldif ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ { ∅ } ) )
8 6 7 bitr4i ( ( 𝑥𝐴𝑥 ≠ ∅ ) ↔ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) )
9 8 imbi1i ( ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
10 9 albii ( ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
11 df-fr ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
12 df-ral ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
13 10 11 12 3bitr4i ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 )