Metamath Proof Explorer


Theorem dffr5

Description: A quantifier-free definition of a well-founded relationship. (Contributed by Scott Fenton, 11-Apr-2011)

Ref Expression
Assertion dffr5 ( 𝑅 Fr 𝐴 ↔ ( 𝒫 𝐴 ∖ { ∅ } ) ⊆ ran ( E ∖ ( E ∘ 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 eldif ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ { ∅ } ) )
2 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
3 velsn ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ )
4 3 necon3bbii ( ¬ 𝑥 ∈ { ∅ } ↔ 𝑥 ≠ ∅ )
5 2 4 anbi12i ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ { ∅ } ) ↔ ( 𝑥𝐴𝑥 ≠ ∅ ) )
6 1 5 bitri ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ ( 𝑥𝐴𝑥 ≠ ∅ ) )
7 brdif ( 𝑦 ( E ∖ ( E ∘ 𝑅 ) ) 𝑥 ↔ ( 𝑦 E 𝑥 ∧ ¬ 𝑦 ( E ∘ 𝑅 ) 𝑥 ) )
8 epel ( 𝑦 E 𝑥𝑦𝑥 )
9 vex 𝑦 ∈ V
10 vex 𝑥 ∈ V
11 9 10 coep ( 𝑦 ( E ∘ 𝑅 ) 𝑥 ↔ ∃ 𝑧𝑥 𝑦 𝑅 𝑧 )
12 vex 𝑧 ∈ V
13 9 12 brcnv ( 𝑦 𝑅 𝑧𝑧 𝑅 𝑦 )
14 13 rexbii ( ∃ 𝑧𝑥 𝑦 𝑅 𝑧 ↔ ∃ 𝑧𝑥 𝑧 𝑅 𝑦 )
15 dfrex2 ( ∃ 𝑧𝑥 𝑧 𝑅 𝑦 ↔ ¬ ∀ 𝑧𝑥 ¬ 𝑧 𝑅 𝑦 )
16 11 14 15 3bitrri ( ¬ ∀ 𝑧𝑥 ¬ 𝑧 𝑅 𝑦𝑦 ( E ∘ 𝑅 ) 𝑥 )
17 16 con1bii ( ¬ 𝑦 ( E ∘ 𝑅 ) 𝑥 ↔ ∀ 𝑧𝑥 ¬ 𝑧 𝑅 𝑦 )
18 8 17 anbi12i ( ( 𝑦 E 𝑥 ∧ ¬ 𝑦 ( E ∘ 𝑅 ) 𝑥 ) ↔ ( 𝑦𝑥 ∧ ∀ 𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
19 7 18 bitri ( 𝑦 ( E ∖ ( E ∘ 𝑅 ) ) 𝑥 ↔ ( 𝑦𝑥 ∧ ∀ 𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
20 19 exbii ( ∃ 𝑦 𝑦 ( E ∖ ( E ∘ 𝑅 ) ) 𝑥 ↔ ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
21 10 elrn ( 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅 ) ) ↔ ∃ 𝑦 𝑦 ( E ∖ ( E ∘ 𝑅 ) ) 𝑥 )
22 df-rex ( ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ↔ ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
23 20 21 22 3bitr4i ( 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅 ) ) ↔ ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 )
24 6 23 imbi12i ( ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅 ) ) ) ↔ ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
25 24 albii ( ∀ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅 ) ) ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
26 dfss2 ( ( 𝒫 𝐴 ∖ { ∅ } ) ⊆ ran ( E ∖ ( E ∘ 𝑅 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅 ) ) ) )
27 df-fr ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
28 25 26 27 3bitr4ri ( 𝑅 Fr 𝐴 ↔ ( 𝒫 𝐴 ∖ { ∅ } ) ⊆ ran ( E ∖ ( E ∘ 𝑅 ) ) )