Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ { ∅ } ) ) |
2 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
3 |
|
velsn |
⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) |
4 |
3
|
necon3bbii |
⊢ ( ¬ 𝑥 ∈ { ∅ } ↔ 𝑥 ≠ ∅ ) |
5 |
2 4
|
anbi12i |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ { ∅ } ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
6 |
1 5
|
bitri |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
7 |
|
brdif |
⊢ ( 𝑦 ( E ∖ ( E ∘ ◡ 𝑅 ) ) 𝑥 ↔ ( 𝑦 E 𝑥 ∧ ¬ 𝑦 ( E ∘ ◡ 𝑅 ) 𝑥 ) ) |
8 |
|
epel |
⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) |
9 |
|
vex |
⊢ 𝑦 ∈ V |
10 |
|
vex |
⊢ 𝑥 ∈ V |
11 |
9 10
|
coep |
⊢ ( 𝑦 ( E ∘ ◡ 𝑅 ) 𝑥 ↔ ∃ 𝑧 ∈ 𝑥 𝑦 ◡ 𝑅 𝑧 ) |
12 |
|
vex |
⊢ 𝑧 ∈ V |
13 |
9 12
|
brcnv |
⊢ ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) |
14 |
13
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝑥 𝑦 ◡ 𝑅 𝑧 ↔ ∃ 𝑧 ∈ 𝑥 𝑧 𝑅 𝑦 ) |
15 |
|
dfrex2 |
⊢ ( ∃ 𝑧 ∈ 𝑥 𝑧 𝑅 𝑦 ↔ ¬ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) |
16 |
11 14 15
|
3bitrri |
⊢ ( ¬ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ↔ 𝑦 ( E ∘ ◡ 𝑅 ) 𝑥 ) |
17 |
16
|
con1bii |
⊢ ( ¬ 𝑦 ( E ∘ ◡ 𝑅 ) 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) |
18 |
8 17
|
anbi12i |
⊢ ( ( 𝑦 E 𝑥 ∧ ¬ 𝑦 ( E ∘ ◡ 𝑅 ) 𝑥 ) ↔ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
19 |
7 18
|
bitri |
⊢ ( 𝑦 ( E ∖ ( E ∘ ◡ 𝑅 ) ) 𝑥 ↔ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
20 |
19
|
exbii |
⊢ ( ∃ 𝑦 𝑦 ( E ∖ ( E ∘ ◡ 𝑅 ) ) 𝑥 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
21 |
10
|
elrn |
⊢ ( 𝑥 ∈ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ↔ ∃ 𝑦 𝑦 ( E ∖ ( E ∘ ◡ 𝑅 ) ) 𝑥 ) |
22 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
23 |
20 21 22
|
3bitr4i |
⊢ ( 𝑥 ∈ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) |
24 |
6 23
|
imbi12i |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝑥 ∈ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
25 |
24
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝑥 ∈ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ) ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
26 |
|
dfss2 |
⊢ ( ( 𝒫 𝐴 ∖ { ∅ } ) ⊆ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝑥 ∈ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ) ) |
27 |
|
df-fr |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
28 |
25 26 27
|
3bitr4ri |
⊢ ( 𝑅 Fr 𝐴 ↔ ( 𝒫 𝐴 ∖ { ∅ } ) ⊆ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ) |