Description: Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | coep.1 | ⊢ 𝐴 ∈ V | |
coep.2 | ⊢ 𝐵 ∈ V | ||
Assertion | coep | ⊢ ( 𝐴 ( E ∘ 𝑅 ) 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 𝑅 𝑥 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coep.1 | ⊢ 𝐴 ∈ V | |
2 | coep.2 | ⊢ 𝐵 ∈ V | |
3 | 2 | epeli | ⊢ ( 𝑥 E 𝐵 ↔ 𝑥 ∈ 𝐵 ) |
4 | 3 | anbi1ci | ⊢ ( ( 𝐴 𝑅 𝑥 ∧ 𝑥 E 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝐴 𝑅 𝑥 ) ) |
5 | 4 | exbii | ⊢ ( ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝑥 E 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝐴 𝑅 𝑥 ) ) |
6 | 1 2 | brco | ⊢ ( 𝐴 ( E ∘ 𝑅 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝑥 E 𝐵 ) ) |
7 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝐴 𝑅 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝐴 𝑅 𝑥 ) ) | |
8 | 5 6 7 | 3bitr4i | ⊢ ( 𝐴 ( E ∘ 𝑅 ) 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 𝑅 𝑥 ) |