Metamath Proof Explorer


Theorem coep

Description: Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Hypotheses coep.1 𝐴 ∈ V
coep.2 𝐵 ∈ V
Assertion coep ( 𝐴 ( E ∘ 𝑅 ) 𝐵 ↔ ∃ 𝑥𝐵 𝐴 𝑅 𝑥 )

Proof

Step Hyp Ref Expression
1 coep.1 𝐴 ∈ V
2 coep.2 𝐵 ∈ V
3 2 epeli ( 𝑥 E 𝐵𝑥𝐵 )
4 3 anbi1ci ( ( 𝐴 𝑅 𝑥𝑥 E 𝐵 ) ↔ ( 𝑥𝐵𝐴 𝑅 𝑥 ) )
5 4 exbii ( ∃ 𝑥 ( 𝐴 𝑅 𝑥𝑥 E 𝐵 ) ↔ ∃ 𝑥 ( 𝑥𝐵𝐴 𝑅 𝑥 ) )
6 1 2 brco ( 𝐴 ( E ∘ 𝑅 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥𝑥 E 𝐵 ) )
7 df-rex ( ∃ 𝑥𝐵 𝐴 𝑅 𝑥 ↔ ∃ 𝑥 ( 𝑥𝐵𝐴 𝑅 𝑥 ) )
8 5 6 7 3bitr4i ( 𝐴 ( E ∘ 𝑅 ) 𝐵 ↔ ∃ 𝑥𝐵 𝐴 𝑅 𝑥 )