Metamath Proof Explorer


Theorem coep

Description: Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Hypotheses coep.1 A V
coep.2 B V
Assertion coep A E R B x B A R x

Proof

Step Hyp Ref Expression
1 coep.1 A V
2 coep.2 B V
3 2 epeli x E B x B
4 3 anbi1ci A R x x E B x B A R x
5 4 exbii x A R x x E B x x B A R x
6 1 2 brco A E R B x A R x x E B
7 df-rex x B A R x x x B A R x
8 5 6 7 3bitr4i A E R B x B A R x