Metamath Proof Explorer


Theorem coepr

Description: Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Hypotheses coep.1 A V
coep.2 B V
Assertion coepr A R E -1 B x A x R B

Proof

Step Hyp Ref Expression
1 coep.1 A V
2 coep.2 B V
3 vex x V
4 1 3 brcnv A E -1 x x E A
5 1 epeli x E A x A
6 4 5 bitri A E -1 x x A
7 6 anbi1i A E -1 x x R B x A x R B
8 7 exbii x A E -1 x x R B x x A x R B
9 1 2 brco A R E -1 B x A E -1 x x R B
10 df-rex x A x R B x x A x R B
11 8 9 10 3bitr4i A R E -1 B x A x R B