Metamath Proof Explorer


Theorem brco

Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004) (Revised by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses opelco.1 A V
opelco.2 B V
Assertion brco A C D B x A D x x C B

Proof

Step Hyp Ref Expression
1 opelco.1 A V
2 opelco.2 B V
3 brcog A V B V A C D B x A D x x C B
4 1 2 3 mp2an A C D B x A D x x C B