Metamath Proof Explorer


Definition df-co

Description: Define the composition of two classes. Definition 6.6(3) of TakeutiZaring p. 24. For example, ( ( exp o. cos )0 ) =e ( ex-co ) because ( cos0 ) = 1 (see cos0 ) and ( exp1 ) = e (see df-e ). Note that Definition 7 of Suppes p. 63 reverses A and B , uses /. instead of o. , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion df-co AB=xy|zxBzzAy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 cB classB
2 0 1 ccom classAB
3 vx setvarx
4 vy setvary
5 vz setvarz
6 3 cv setvarx
7 5 cv setvarz
8 6 7 1 wbr wffxBz
9 4 cv setvary
10 7 9 0 wbr wffzAy
11 8 10 wa wffxBzzAy
12 11 5 wex wffzxBzzAy
13 12 3 4 copab classxy|zxBzzAy
14 2 13 wceq wffAB=xy|zxBzzAy