Metamath Proof Explorer


Theorem cos0

Description: Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion cos0 cos 0 = 1

Proof

Step Hyp Ref Expression
1 0re 0
2 recosval 0 cos 0 = e i 0
3 1 2 ax-mp cos 0 = e i 0
4 it0e0 i 0 = 0
5 4 fveq2i e i 0 = e 0
6 ef0 e 0 = 1
7 5 6 eqtri e i 0 = 1
8 7 fveq2i e i 0 = 1
9 re1 1 = 1
10 8 9 eqtri e i 0 = 1
11 3 10 eqtri cos 0 = 1