Metamath Proof Explorer


Definition df-ef

Description: Define the exponential function. Its value at the complex number A is ( expA ) and is called the "exponential of A "; see efval . (Contributed by NM, 14-Mar-2005)

Ref Expression
Assertion df-ef exp=xk0xkk!

Detailed syntax breakdown

Step Hyp Ref Expression
0 ce classexp
1 vx setvarx
2 cc class
3 vk setvark
4 cn0 class0
5 1 cv setvarx
6 cexp class^
7 3 cv setvark
8 5 7 6 co classxk
9 cdiv class÷
10 cfa class!
11 7 10 cfv classk!
12 8 11 9 co classxkk!
13 4 12 3 csu classk0xkk!
14 1 2 13 cmpt classxk0xkk!
15 0 14 wceq wffexp=xk0xkk!