Metamath Proof Explorer


Definition df-sum

Description: Define the sum of a series with an index set of integers A . The variable k is normally a free variable in B , i.e., B can be thought of as B ( k ) . This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers) by summo . Examples: sum_ k e. { 1 , 2 , 4 } k means 1 + 2 + 4 = 7 , and sum_ k e. NN ( 1 / ( 2 ^ k ) ) = 1 means 1/2 + 1/4 + 1/8 + ... = 1 ( geoihalfsum ). (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jun-2019)

Ref Expression
Assertion df-sum kAB=ιx|mAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm

Detailed syntax breakdown

Step Hyp Ref Expression
0 vk setvark
1 cA classA
2 cB classB
3 1 2 0 csu classkAB
4 vx setvarx
5 vm setvarm
6 cz class
7 cuz class
8 5 cv setvarm
9 8 7 cfv classm
10 1 9 wss wffAm
11 caddc class+
12 vn setvarn
13 12 cv setvarn
14 13 1 wcel wffnA
15 0 13 2 csb classn/kB
16 cc0 class0
17 14 15 16 cif classifnAn/kB0
18 12 6 17 cmpt classnifnAn/kB0
19 11 18 8 cseq classseqm+nifnAn/kB0
20 cli class
21 4 cv setvarx
22 19 21 20 wbr wffseqm+nifnAn/kB0x
23 10 22 wa wffAmseqm+nifnAn/kB0x
24 23 5 6 wrex wffmAmseqm+nifnAn/kB0x
25 cn class
26 vf setvarf
27 26 cv setvarf
28 c1 class1
29 cfz class
30 28 8 29 co class1m
31 30 1 27 wf1o wfff:1m1-1 ontoA
32 13 27 cfv classfn
33 0 32 2 csb classfn/kB
34 12 25 33 cmpt classnfn/kB
35 11 34 28 cseq classseq1+nfn/kB
36 8 35 cfv classseq1+nfn/kBm
37 21 36 wceq wffx=seq1+nfn/kBm
38 31 37 wa wfff:1m1-1 ontoAx=seq1+nfn/kBm
39 38 26 wex wffff:1m1-1 ontoAx=seq1+nfn/kBm
40 39 5 25 wrex wffmff:1m1-1 ontoAx=seq1+nfn/kBm
41 24 40 wo wffmAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm
42 41 4 cio classιx|mAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm
43 3 42 wceq wffkAB=ιx|mAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm