Metamath Proof Explorer


Theorem geoihalfsum

Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 . This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017) (Proof shortened by AV, 9-Jul-2022)

Ref Expression
Assertion geoihalfsum k12k=1

Proof

Step Hyp Ref Expression
1 2cn 2
2 1 a1i k2
3 2ne0 20
4 3 a1i k20
5 nnz kk
6 2 4 5 exprecd k12k=12k
7 6 sumeq2i k12k=k12k
8 halfcn 12
9 halfre 12
10 halfge0 012
11 absid 1201212=12
12 9 10 11 mp2an 12=12
13 halflt1 12<1
14 12 13 eqbrtri 12<1
15 geoisum1 1212<1k12k=12112
16 8 14 15 mp2an k12k=12112
17 1mhlfehlf 112=12
18 17 oveq2i 12112=1212
19 ax-1cn 1
20 ax-1ne0 10
21 19 1 20 3 divne0i 120
22 8 21 dividi 1212=1
23 16 18 22 3eqtri k12k=1
24 7 23 eqtr3i k12k=1