Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 . This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017) (Proof shortened by AV, 9-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | geoihalfsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn | |
|
2 | 1 | a1i | |
3 | 2ne0 | |
|
4 | 3 | a1i | |
5 | nnz | |
|
6 | 2 4 5 | exprecd | |
7 | 6 | sumeq2i | |
8 | halfcn | |
|
9 | halfre | |
|
10 | halfge0 | |
|
11 | absid | |
|
12 | 9 10 11 | mp2an | |
13 | halflt1 | |
|
14 | 12 13 | eqbrtri | |
15 | geoisum1 | |
|
16 | 8 14 15 | mp2an | |
17 | 1mhlfehlf | |
|
18 | 17 | oveq2i | |
19 | ax-1cn | |
|
20 | ax-1ne0 | |
|
21 | 19 1 20 3 | divne0i | |
22 | 8 21 | dividi | |
23 | 16 18 22 | 3eqtri | |
24 | 7 23 | eqtr3i | |