Metamath Proof Explorer


Theorem 1mhlfehlf

Description: Prove that 1 - 1/2 = 1/2. (Contributed by David A. Wheeler, 4-Jan-2017)

Ref Expression
Assertion 1mhlfehlf 112=12

Proof

Step Hyp Ref Expression
1 2cn 2
2 ax-1cn 1
3 2cnne0 220
4 divsubdir 21220212=2212
5 1 2 3 4 mp3an 212=2212
6 2m1e1 21=1
7 6 oveq1i 212=12
8 2div2e1 22=1
9 8 oveq1i 2212=112
10 5 7 9 3eqtr3ri 112=12